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A vertical buoyant jet with high momentum in a 
long ventilated tunnel 
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In this paper the flow resulting from the release of buoyant material within a long 
tunnel is investigated. The source fluid is discharged through a nozzle of small radius 
with sufficiently high flow rate to ensure that the axial lengthscale of the buoyant jet 
(subsequently called the ‘jet-length’) is several times the depth of the tunnel, d. The 
ends of the tunnel may be either open or closed and a number of ventilation points may 
exist along it. Consideration of a source with high momentum is an important 
development in confined jet flow models, as most previous models have assumed that 
the source has little or no initial momentum. It is found that circulation cells are driven 
near to the source and that the concentration within them increases to a steady-state 
maximum. At a distance of about 2.5d from the source the buoyancy forces are then 
sufficiently strong to drive a two-layered stratified counterflow. The steady-state 
conservation equations are analysed in order to calculate the mean flow variables. The 
flow past a ventilation point and the characteristics of the secondary outflow are 
derived, enabling the calculation of the total number of vents needed to vent the 
buoyant layer. The time dependence of the mean concentration in the circulation cell 
near to the source is also deduced. This could be used to calculate time-dependent 
solutions for the other mean flow variables. All of the theoretical results are compared 
with experimental measurements. 

1. Introduction 
Jirka & Harleman (1979) have investigated the stability and mixing of a vertical 

planar buoyant jet discharged in a long channel of rectangular cross-section, filled with 
a shallow layer of water with a free surface. They observed that a source of momentum 
gave rise to circulation cells which extended over the full height of the channel (see 
figure 1). Up to two circulation cells on each side of the source were observed 
experimentally (in the planar case). Their experiments showed that the horizontal 
length of the primary cell can be estimated to be approximately 2d, with the centre of 
the primary (first) circulation cell approximately 1.5d from the source axis and 0.5d 
from the tank base. Using a circular source, assuming that the width w of the channel 
is of a similar order to the depth d, then circulations will be inhibited in the ( y ,  z)-plane. 

If the source is strongly buoyant, the buoyancy forces are sufficiently strong to 
inhibit the formation of a circulation cell and the jet spreads horizontally after 
impingement (see figure 2a). All the entrainment into the flow takes place into the 
buoyant jet before it has impinged and is thus independent of the outflowing layer. 

A buoyant jet is characterized by its initial specific momentum and buoyancy fluxes 
M ,  and B, defined by 
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FIGURE 1 .  A schematic diagram of the flow produced by a lane non-buoyant discharge in a 
tunnel. 

Source 

FIGURE 2. The flow produced by a strongly buoyant discharge into a tunnel; (a) a schematic diagram, 
and (b) an image taken from an experiment (in which dyed buoyant fluid was released from a circular 
nozzle in a Perspex tunnel). The image was obtained by digital analysis of a video of the flow - the 
lines are contours of equal mean concentration (averaged through the tank). 

where u, denotes the velocity at the source fluid, which has density p,; pa is a reference 
density; and Ap = po-pa. A lengthscale may be formed using these fluxes, called the 
'jet-length' scale, Lj (see, for example, Turner 1973), where 

Lj = A&& (1.2) 
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FIGURE 3. The flow produced by a buoyant source with high momentum; (a) schematic diagram, 
and (b) an image showing contours of dye concentration taken from an experiment). 

which gives a measure of the lengthscale over which momentum forces will dominate 
buoyancy forces. In the situation considered here, Lj is several times the depth d, and 
so the effects of buoyancy are negligible before impingement. 

The resulting flow, drawn schematically in figure 3 (a), is a combination of the above 
two extreme cases. The buoyant jet, discharged vertically and driven mainly by its 
initial momentum, spreads out horizontally on impingement. The jet velocities are 
sufficiently high to drive a circulation cell near to the source (region I )  which is 
observed to be well mixed, with the concentration increasing to a steady-state 
maximum. This increase in concentration is due to the re-entrainment of buoyant fluid 
into the jet itself. The centre of the circulation is approximately 1.5d from the source 
axis, but due to the buoyancy of the source the centre is less than 0.5d from the 
impingement boundary. The buoyancy of the jet is sufficient to inhibit the formation 
of a secondary circulation cell, which was observed in the non-buoyant (planar) case 
above, but turbulent momentum transfer excites the fluid on the outer boundary of the 
primary cell (region 2), entraining ambient fluid and releasing buoyant fluid (region 3) 
to the two-layer counterflow. The released fluid (from region 3) then flows horizontally 
in a stable buoyant layer with negligible entrainment cross the interface (region 4). A 
typical ‘freeze-frame’ of the flow is given in figure 3(b),  demonstrating all of the 
features mentioned above. This flow has been observed previously by Lee (1980) and 
Andreopoulos, Praturi & Rodi (1986) in experiments with vertical buoyant jets in 
shallow water, although they merely consider the flow as an ‘instability ’ of the ‘stable’ 
buoyancy-dominated flow. 

This study has the obvious practical application to the modelling of a leak of natural 
(or other buoyant) gas within a tunnel or duct. Piped gas is often under high pressure 
and on escaping through a small hole, caused by corrosion, the flow described in this 
paper could be set up. Clearly it would be advantageous to know under what 
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circumstances the concentration levels of gas would pass required safety limits, and 
what configurations of vents would be most effective in venting the gas. Therefore, in 
this investigation the build-up of concentration within the tunnel and the dependence 
of the flow of buoyant fluid along it on the position, size and number of ventilation 
points is of particular importance. A further objective is the study of the concentration 
build-up within the primary cell and the effect of a ventilation point within it. 

2. Analysis 
In the following analysis it is initially assumed that the ventilation points are situated 

symmetrically on either side of the source, which is assumed to be negatively buoyant 
for ease of comparison with the experiments. Theoretically then, the flow should be 
symmetric about the source and so only one half is considered. Initially it is assumed 
that all the ventilation points are outside regions 1 and 2, and that there are sufficient 
vents to make no restriction on the inflow or outflow rates. 

2.1. Region 4 :  the stratiJied counterflow 
The two-dimensional flow of a buoyant layer has been previously studied by Ellison & 
Turner (1959), Wilkinson &Wood (1971) and Jirka & Harleman (1979), but only when 
the depth of the layer is small compared with the total depth and one layer has a free 
surface. The counterflow will now be re-examined when both layers are bounded by 
solid boundaries and the buoyant layer may have large depth. 

The following assumptions are made in analysing the flow: 
(i) the flow has reached a steady-state equilibrium; 
(ii) the flow is mainly two-dimensional with vertical velocities sufficiently small for 

(iii) there is negligible entrainment across the interface; Ellison & Turner (1959) 
the flow to be considered horizontal with a hydrostatic pressure distribution ; 

gave a lower limit on the Richardson number 

where pa is the ambient density and Au is the horizontal velocity shear: for 
entrainment across such an interface to be considered negligible, Ri x 0.8 (this limit is 
generally satisfied in the experiments) ; 

(iv) the flow force is constant along region 4 (see Benjamin 1968); 
(v) at large distances from the tunnel the environmental fluid is still and of uniform 

density. 
Let the height of the lower layer be h,(x, t),  with density p,(t) (independent of x from 

(iii)) with mean velocity uz(x, t). The upper layer of inflowing ambient fluid has mean 
velocity ul(x, t )  and depth hl(x,  t )  = d -  h,(x, t ) .  

Assuming a hydrostatic pressure distribution p(x ,  z )  = p 1  -pg(z - h2),  where pr is the 
pressure at the interface, then the equations of horizontal motion for the upper and 
lower layers are 
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where etc. are the shear stresses associated with the turbulent fluctuating velocities 
u’, v’, w’ in the x-, y-  an z-directions respectively. Equations (2.2) and (2.3) are 
equations of volume conservation, and can be obtained by integrating the continuity 
equation over z. 

2.1.1. Negligible shear stresses 
In the following analysis, the steady state is considered initially, and as a first 

approximation it is assumed that the shear stresses are negligible. (It may be shown, 
Barnett 1991, that the effect of the shear stresses is to cause a small variation in the 
depth of the buoyant layer, which is observed to be negligible in the present 
experiments.) 

The equations then reduce to (substituting for h,(x)) 

Integration of (2.7) and (2.6) with respect to x gives 

Q2 = wh,(x) uz(x), 
where Q, is the constant volume flux of the lower layer, and 

Qi = w ( d - k ( x ) )  ui(x), 

(2.10) 

(2.1 1) 

where Q, is the constant (negative) volume flux of the upper layer (of density pa). 

any vertical cross-section in the counterflow become 
Thus in the steady-state, the equations of total volume and mass conservation over 

i Q o  = ~ ( u z  h, + ui(d-hz)) = Q z  + Qi, (2.12) 

and f Q o  PO = ~ ( u z  pz hz + u1 Pa(d-hJ) or gi = Q 2  d ,  (2.13) 

where g; = ((p2 -pa)/pa)g is the reduced gravity of the buoyant layer. 
The interface pressure can be eliminated from (2.8) and (2.9) giving 

and expanding this with the use of (2.10) and (2.1 1) gives 

(2.14) 

(2.15) 

10-2 
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This means that h,, and consequently u2 and u1 must have constant values over the 
outflow region. 

(The alternative is that 

In the Boussinesq limit this reduces to the critical Froude number condition 

4 
h,) g; h2 

and F," = --, 4 F,2+F," = 1, where F," = 

which corresponds to a jump in h,. A jump is not observed experimentally (generally 
to obtain such jumps a controlling geometry, e.g. a ridge, is needed) and so this 
possibility is ignored.) 

Hence the flow is governed by the three equations 

wu,h, = Q,, (2.16) 

(2.17) Qo gh = 2Qz gk 

Qo - 2 Q z  
2w(d - h,) ' 

u, = (2.18) 

in the five unknowns u,, u,, h,, g; and Q,. A further two conditions must be obtained 
from the near-field and far-field conditions. 

2.1.2. Balance offlow forces over the head 
The integral budget of momentum and pressure is constant in the entire domain. 

Benjamin (1968) used this balance in the flow forces over the 'head ' in his study of the 
flow over an air pocket. He defined the 'flow force' F as the sum of the horizontal 
momentum flux and the pressure forces. Thus if A p  is the density variation from pa 

F = rr @, + Ap) u2 dz dy + l[ [ @a + Ap) gdz'dzdy, (2.19) 
0 0  

which, for the two-layered system above reduces to 

(2.20) 

Benjamin's analysis may be extended to the current situation. Consider the flow over 
the head of the outflowing layer (assuming that it has not met a ventilation hole) in a 
frame moving with the outflowing layer (see figure 4a). 

The incoming ambient fluid has speed U and the speed of the fluid over the head is 
u* with u* = u1-u2. The point 0 is a stagnation point, with pressure p,,. 

Use of conservation of volume and the Bernoulli theorem along OA gives the flow 
force per unit width of the incoming fluid 

en = ~ ~ d i - & ~ d U ~ - i g p ~ d Z .  (2.21) 

Applying the Bernoulli theorem along 01, using the Bernoulli theorem to show that 
PB = P O  and PB = PI +gP2 h2 gives 

g ~ 2  h2 = iPa 4t + gpa hz, (2.22) 

or U: = 2h2g;. (2.23) 
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FIGURE 4. (a) Schematic diagram of the flow over the ‘head’; (h)  a typical image taken from 
experiment showing that the outflowing buoyant layer occupies half the depth of the tunnel. 

The flow force per unit width of the outgoing fluid may be calculated similarly, giving 

(2.24) Fout = PaU:(d-hz) + (PO-&: P a )  ‘-%Pa($ + ‘3  + tgp, 

Equating the flow forces and using (2.21) and (2.24) yields 

(2.25) 

Hence ignoring the uninteresting possibility of g; = 0, equation ( 2 . 2 5 )  gives two 
solutions for h,: h, = 0 and 

h, = :d, (2.26) 

i.e. the buoyant layer occupies half the depth of the tunnel, which is analogous to the 
solution obtained by Benjamin (1968) in his application to the flow over an air pocket. 

Whilst moving in a frame at the propagation velocity of the density current, the 
hydrostatic pressure assumption is exact. Moncrieff & So (1989) presented a theory 
that included the effect of vorticity in the density current on its far-field behaviour. The 
pressure in the density current is then not hydrostatic except in the far field where the 
flow is horizontal. By allowing the density current to have an inflow speed far from the 
head, they found that there is partial cancellation in the corrective terms to (2.23). and 
so the above solution is more accurate than might otherwise be expected. 

The above analysis will only apply before the head has met a vent; however it is 
observed experimentally that the outflow (between the mixing region the vent) 
continues to maintain this half-tunnel depth even after the head has flowed through or 
over a vent (see for example, figure 4b which shows a typical flow). 

2.1.3. Implications for the pow 
Making the assumption that the previously obtained result (2.26) holds between the 

start of the counterflow region and the first ventilation point, then the flow variables, 
Q,, u, and g;J may be calculated. 
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Eliminating u, and Q, from (2.16), (2.17) and (2.1 8) ,  
using (2.23), (2.26) and u* = u1 - u,, gives an equation 

Writing gh/gj, = y2 then (2.27) may be rewritten 

y; - ; ~ 3 ( 2  - y 2 ) 2  = 0, 

where B3 = 4Q:/bw3ggb. 

and substituting for h, and u, 
for 86: 

(2.27) 

(2.28) 

(2.29) 

Equation (2.28) could be solved numerically, but a good approximation to the 
solution, for small B, is given by 

y, = B-BB'. (2.30) 

The corresponding approximate solutions for u,, ul,  Q, and g,, including the term of 
order B2 in (2.30), are 

(2.31) 

(2.32) 

Q -L%(l+$B), (2.33) 

gi = gh B(l --;B). (2.34) 

Generally, B is small and so the terms of order B2 could be neglected. In this case, 
note also that the total volume flux of the outflowing buoyant layers, 2Q2, is 
considerably larger than that of the source. The reduced gravity of the buoyant outflow 
will be lower than that of the source by an equal factor (see (2.17)). Note also that the 
solution implies that the Richardson number has a value of approximately unity and 
is approximately independent of the source conditions. This would explain why 
negligible entrainment between the layers is observed in the experiments. 

In the above solution, (2.31)-(2.34), it was assumed that the value of the parameter 
B is small. This is generally the case (in the experiments described in $3,  B << l ) ,  but the 
behaviour of the solution to (2.28) for large B may also be considered. 

The value of B may be increased (equivalent to increasing the flow rate or decreasing 
the reduced gravity of the source) and the value of the solution (2.28), y,, increases 
correspondingly. However when B3 = 4 then the solution to (2.28) is y, = 1, i.e. the 
reduced gravity of the buoyant outflow is equal to that of the source. In this case 
Q, = fQ,, uz = Q,/wd and u1 = 0. Thus when B3 = 4 the solution implies that there is 
zero entrainment into the primary cell. This is clearly a physically unrealistic situation, 
as B3 = 4 is equivalent to having an enormous value for the jet length (B3 = 4 implies 
that Lj z O( 105)d with typical experimental values) and under such circumstances 
there would be considerable entrainment. 

Increasing B further yields y2 > 1, a physically impossible result. It must therefore 
be concluded that the model may be applied to situations in which B << 1. Physically 
this states that the volume flux of the buoyant layer is sufficiently small to be easily 
transported as a gravity current (i.e. the model is appropriate). For large values of B, 
it is expected that the source fluid will form a 'plug', driving the ambient fluid from the 
tunnel. 

1 
u =--1 ,(dg$ &( 1 -ill) z - __ d 2  (h, g;>t 

' - 2 B  
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FIGURE 5.  A schematic diagram of a typical flow with ventilation points. 

2.1.4. Flow with energy loss at the head 
The analysis may be extended to include the possibility of energy loss or supply. 

Equation (2.23) may be modified by including a head loss 5. The balance of flow forces 
is unaffected by the energy loss, and in this case the balance gives 

uz = dg; and h, = id+ 5. (2.35) 

Hence a flow with h, > i d  is possible with an energy loss (5 > 0), and a flow with 
h, < ad implies an energy supply to the counterflow (5  < 0). Equation (2.28) is modified 
to 

y i  - [2 - y,( 1 + 25/d)] ,  = 0,  where B’ = 

Neglecting all but the largest terms, the modified approximate solutions are 

(2.37) \ u2 = !j(dgA)t B’t( 1 - 25/d), U ,  = -i(gi d); B’;( 1 + 25/d), 

Q, = kQo/B’, g; = B’gh. 

Note that B’ >, B for all 5 and, if the flow is not energy conserving, the flow rate Q, will 
be less than its value in (2.33) whereas the reduced gravity g; will be greater than in 
(2.34). 

2.2. Coun terjo w with ventilation points 
A typical ventilation system is shown schematically in figure 5. The Nventilation points 
have area Ai ( i  = 1 ... V) .  Without the presence of a ‘head’ the analysis of s2.1.2 and 
2.1.3 cannot be used and so it is assumed here that the flow has pre-set initial values 
for the flow variables h,  etc. In practice though, it is observed that the outflow 
maintains its initial depth of !jd+c long after the fluid has flowed through a vent (or 
vents). 

2.2.1 The volume f lux through the vent 
It has been shown (Linden, Lane-Serff & Smeed 1990) that the exchange flow Q of 

a buoyant fluid through a hole in a closed box containing buoyant fluid takes the form 

Q % kA(g’ h);, (2.38) 

where A is the area of the hole, g’ is the reduced gravity, h is the depth of the buoyant 
fluid and k is a constant dependent on the shape and orientation of the hole. For a 
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FIGURE 6 .  A schematic diagram of the flow over a vent. 

square hole in vertical boundary the value of k is approximately 0.25 with equal flow 
into and out of the hole. It is assumed that a similar relation holds in the present 
situation with the flow out of the first ventilation hole q(,, given by 

q(l)  = kl A ,  ig; h,(O,)t (2.39) 

where k, is a constant and h,(,, denotes the initial value of h,. 

2.2.2. Theflow over the vent 
The flow over a ventilation hole is drawn schematically in figure 6. It is assumed that 

the fluid flow past the hole has height h,(,, and reduced gravity g;, i.e. that no mixing 
has taken place, and that the velocities of the lower and upper layers are u , ( ~ ,  and u , ( ~ )  
respectively. 

Continuity of volume in the upper and lower layers then gives 

(2.40) 

(2.41) 

Equation (2.14) may also be applied, giving 

Hence u,(~) and u2(l)  may be eliminated, giving an equation for h,(,): 

-2g;[h,(,, -hZ(l)l. (2.43) 

The process above may then be repeated for subsequent vents until the maximum flow 
through a vent given by (2.39) is greater than the buoyant-layer volume flux 
approaching it (i.e. q(,) > Q,,,,). Thus repeated application of (2.43) represents a 
method by which the number of ventilation points required for total ventilation of the 
buoyant layer can be calculated. 

Equation (2.43) may be rewritten making use of the solution obtained in 92.1.4, 
(2.37), for small 6 and the Boussinesq approximation, giving 
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FIGURE 7. The flow with a vent in the primary cell; (a) a schematic diagram, and (b) an image 
taken from experiment. 

where A’, = A J d  hk,,) = h q , , / 4  = </d. (2.45) 

This final equation shows that for a given inflow depth h,(,, (set by c), the secondary 
outflow height h,(,, is dependent (to first order in B’) only on the area of the opening. 
(Note that the secondary height is considered here rather than the secondary volume 
flux as it is easier to measure A,(,, in experiments.) 

2.2.3. A ventilation point in the primary cells 
It was mentioned earlier that a ventilation point in the primary cell region allows 

environmental fluid to be ‘sucked’ into the tunnel due to the drop in pressure 
associated with the circulation. This flow is drawn schematically in figure 7(a). Figure 
7(b )  is taken from experiment, the concentration contour lines clearly showing the flow 
through the vent close to the source. If the volume flux of the inflowing environmental 
fluid into the primary cell is Qp, then the equations of conservation of volume and mass 
flux become 

t Q o  + Qp = Qi + Qz, (2.46) 

f Q o  gk = Q, g’z. (2.47) 

It is expected that the velocity of the inflowing fluid is proportional to the exit velocity 
of the source. Thus an expression for Qp may take the form 

(2.48) 
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where A ,  is the area of the opening, k ,  is a constant, andXx,/d,g;/gh) is the functional 
dependence on the distance of the centre of the vent xp from the source axis and on the 
mean reduced gravity within the primary circulation cell, g;. 

Because of the increased volume flux entering the primary cells, the volume flux of 
the outflow is expected to increase similarly. 

Using the new conservation equations above it is possible to derive an equation 
analogous to (2.28), viz 

7: = p 3 ( 2  - Py,)’, where P = ( 1  + 2Qp/Q,) (1 + 25‘). (2.49) 

The value of P 2 1 can be large which makes it hard to find a general approximate 
solution to (2.49) but a satisfactory approximation (a quadratic fit) is given by 

yz  = B’[l-&PB’+&P2B’2+...] for 0 d PB d 2 with g; = yzgh. (2.50) 

Of more significance to the problem of venting the buoyant fluid is the new value of 
the outflow rate. This is given by 

Qo x A [ l + & P B ’ +  Q ...I, 
Q , = 2 y ,  2 B  

and the layer velocities are given by 

u, = $(dgh)i B’t( 1 - 25) [ 1 + &PB’ + . . .], 
u, = -;(dg;)W(l+25‘) 

(2.51) 

(2.52) 

(2.53) 

From these expressions it can be seen that the inflow Q p  is not merely reflected in an 
equal increase in the outflow Q,, but that Qz increases by approximately 5Q,/16 only 
(for large Q,), with the inflowing velocity u1 decreasing significantly to compensate. 
Thus the system is able to adjust to cope with relatively large volumes of environmental 
fluid being sucked into the primary cell, with quantitatively smaller changes to Q,,gi 
and u,. The increase in Q,, and the decrease in gi, may mean that a larger number of 
vents (than was the case without a vent in the primary cell region) are needed to vent 
the buoyant layer. This increase has been observed in experiments. 

2.2.4. A ventilation point in region 2 
This case is probably the most complex problem resulting from ventilation because 

a vent in the mixing region 2 will allow fluid to flow both into and out of the tunnel. 
Initially there is little buoyancy of the fluid inside the tunnel and so environmental fluid 
may be sucked in by the circulating fluid in the primary cell. However with increasing 
time the buoyancy of the fluid inside the tunnel increases causing an increasing 
resistance to the outflow. Eventually the buoyancy forces may become larger than the 
suction forces and buoyant fluid will flow out of the ventilation point. 

2.3. The concentration build-up in the primary cell 
The concentration within the primary cell increases to a steady-state maximum, this 
increase being due to the re-entrainment of buoyant fluid into the jet and the eventual 
balance between the buoyancy forces of the mixed region and the opposing inertial and 
frictional forces of the counterflow system. The large ‘jet length’ of the source means 
that the source fluid and any inflowing environmental fluid are very rapidly mixed 
throughout the primary cell, and so it is appropriate to consider the mean reduced 
gravity g: of the fluid within the primary cell, which is assumed to have length 1. 
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Suppose the buoyant fluid layer has volume flux Q,(gi). The equation for 
conservation of volume flux (2.12) will still apply, but the equation for conservation of 
mass (2.17) is modified to 

(2.54) 

and hence (2.17) is satisfied when dgb/dt = 0. This is the equation governing the 
concentration build-up within the primary cell, clearly dependent on the nature of the 
function Q2(gL). 

A first-order form for Q2(gi) may be found by observing that (2.37) and (2.16) imply 
that 

Q2(g;) - gi:. (2.55) 

Writing Q2(gL) = kQoghPg;;, (2.56) 

for convenience, (2.54) then becomes 

(2.57) 

where it has been assumed that gi(t) = Kgb(t) - the constant K d 1 allows for the 
dilution of the mixed fluid in region 2 by the incoming ambient fluid. Also, assuming 
that in the limit t +oo the value ofgi(t) tends to the steady-state solution given in 42.1, 
then the parameter /? may be found to be 

wd( 1 - 452) 
[1+ (S) PF+. ..I, '= &hQ, 

recalling that P = 1 if there is no vent in the primary cell, and that B' is small (as long 
as 5 is small). With typical experimental values, ,8 z 0.4. Equation (2.57) has solution 

(2.59) 

which will be compared with experiment, measuring the mean primary cell 
concentration and the mean outflow concentration to compute K .  Equation (2.57) can 
be written in the form 

(2.60) 

gb=(@~)gi and t=P- - 2 Qogh t. (2.61) 
21wd 

where 

Equations (2.60) and (2.61) are the form of (2.57) that will be used in the comparison 
with experimental data as it is easier to obtain gk than g: using digital video analysis. 
Note that the maximum value of gk(t) is given by 

g: = l/K@. (2.62) 

The time-dependent solution for g:, (2.59), and the corresponding solution for g;, 
(2.59), could be used to calculate time dependencies for all of the other flow variables 
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FIGURE 8. The experimental apparatus, 

(by using (2.16) and (2.18)). However, it will be shown that the steady state is reached 
rapidly in practice and thus the steady-state solution, (2.31)-(2.34), is likely to be of 
greater use. 

3. Experimental method 
The experiments were carried out in a Perspex tunnel of width and depth 10 cm and 

length 210 cm (see figure 8). The base of the tunnel consisted of seven slats of length 
30 cm in which there were either one or two ventilation holes of area 64 cm2 in which 
stoppers could be placed. Vertical aluminium dividers could be used to vary the length 
of the tunnel, or to open or close the ends. Except when examining the effect of 
ventilation points, all the vents were closed and the ends of the tunnel were open. The 
Perspex tunnel was placed in a tank of length 9.4 m, depth 47 cm and width 26 cm. 
The tank was then filled with water until the surface was at the same height as the top 
of the tunnel. The water was allowed to settle for at least an hour before each 
experiment. 

The outflow of buoyant fluid was represented by a solution of salt water. A small 
amount of dye (food colouring) was added to the salt solution and the flow visualized 
using the shadowgraph technique. The dyed salt solution was introduced into the 
tunnel using a fine circular nozzle of radius 0.25 mm supplied by a brass cylinder which 
was constantly connected to a high-pressure air supply, ensuring steady flow rates of 
up to 7.5 cm3 s-l. Source reduced gravities of up to 65 cm s-' were used. 

3.1. Video analysis 
By recording the experiments on video tape, digital video analysis can be used to 
calculate mean source concentrations along lines perpendicular to the walls of the 
tunnel. This is a satisfactory way of measuring concentrations in this problem as the 
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flow is two-dimensional in the counterflow, and in the primary cell only mean values 
are needed for comparison with the theory. 

The video picture is divided up into a grid of pixels each with an intensity (from 0, 
black, to 255, white) dependent on the dye concentration. Variations in the background 
illumination could be compensated for by removing an image of the initial state of the 
apparatus by division. An experiment was performed to investigate the variation of 
pixel intensity value with dye concentration. This experiment confirmed that the 
dye/intensity relationship is linear for sufficiently low dye concentrations. So by 
making one density measurement at a specific point in the flow from a fluid sample 
(for example using a Paar density meter) and comparing it to the intensity value there, 
it is easy to calculate the density/intensity relationship. Good consistency was found 
in all cases. 

4. Results 

then the theoretical predictions are compared with the observations. 
Four sets of experiments were carried out. The experiments are described first, and 

4.1. The JEow and its dependence on the source flow rate 
Figure 9(u-f) shows the time development of a typical, unventilated run. Notice 
particularly the development of the gravity current, with the outflow occupying 
approximately half the depth of the tunnel. 

In general, the flow was symmetric for symmetric configurations of vents and in such 
‘perfect ’ conditions, the outflow occupied approximately half the depth of the tunnel, 
in agreement with (2.26) (to f0 .05d) .  This type of situation appears to be somewhat 
unstable and occasionally the flow became permanently asymmetric, with the outflow 
on one side of the source occupying a much larger depth and the outflow on the other 
side occupying a lesser depth. These cases were in the minority however, and are 
thought to be the result of initial imbalances in the temperature between the ends of 
the tunnel, producing a slight bias on the flow within it. Under good conditions, then, 
the predictions for the bulk flow can be checked. 

Experiments were carried out to test the dependence of u, and g ;  on the source flow 
rate Q,. The source flow was altered by changing the pressure in the brass chamber, the 
valve on which ensures constant pressure and hence constant flow rate. For each 
setting of the pressure, the flow was allowed to develop to a steady state before 
measurements were taken. The value of gh was kept constant. 

It was found that a minimum source flow rate was required to maintain the flow 
system of $2, i.e. the input of momentum below this threshold was insufficient to mix 
the fluid to the extent assumed in the analysis. At the threshold it was found that the 
ratio, 6, of jet length to tunnel depth was 

S = L j / d  = 2.9, 

i.e. although S > 1 in all of the experiments, for the system to contain a well-mixed 
recirculating central region, S >, 2.9 is required. 

The outflow velocities were measured by injecting a small volume of green dye into 
the outflow and measuring the time taken for the dye patch to travel a distance of 
30 cm along the tunnel. There was little mixing within the buoyant outflow and so the 
dispersion of the dye patch was minimal. The experimental results agreed well with the 
predictions for the steady-state bulk flow variables (for further details see Barnett 
1991). 
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FIGURE 9. Images showing the development of the flow: (a) t = 10 s, (b) 20 s, (c) 30 s, ( d )  40 S,  

(e) 50 s, ( f )  100 s. 

4.2. The concentration in the primary cell 

To analyse the flow, frames were taken from the video every lOs, the background 
removed, and the dye intensities calculated by digital analysis. The mean primary cell 
concentration was calculated by averaging the intensities over a section of the tunnel 
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FIGURE 10. The time dependence of the primary cell concentration : comparison between the 

experimental data, and the theoretical curve of (2.60) with K = 0.9. 

of length 1 = 2.5d, with one edge on the axis of the source, the same section being used 
for each experiment. The data were put into the appropriate form and compared with 
equation (2.60). 

The data and the solution to (2.60) with K = 0.9 are plotted in figure 10. The 
agreement with the theoretical curve is excellent although there is some scatter about 
the equilibrium state, possibly due to fluctuations in the entrainment flow of the 
ambient layer into the primary cell. This choice of K is reasonable, agreeing with initial 
test measurements of g;  and g: from which K may be calculated. The transition to 
equilibrium takes place over a relatively short time, usually within two minutes in these 
experiments. 

The third objective of the experimental study was to measure the dependence of the 
secondary outflow height following flow over a vent in the counterflow region, on the 
area of the vent. 

The source was switched on and the flow allowed to reach equilibrium. A large vent 
far from the source was then made by sliding one of the base slats along to make a vent 
of sufficiently large area for all the outflow to be easily vented by this single hole. 

The vent was then closed by slowly pushing the slat back to its original position in 
small steps, recording the secondary outflow height at each stage. Of particular 
importance is the minimum size of hole required to vent all the fluid - this will enable 
the calculation of the constant k in (2.44). In practice the measurement of h,(,, proved 
difficult due to the presence of a layer of mixed fluid between the outflowing layer and 
the inflowing environmental fluid. Hence the secondary outflow height measured was 
that of moving fluid only. 

The data are plotted in dimensionless form in figure 11, together with the theoretical 
curve of (2.44). The agreement is good although there is some degree of scatter, with 

4.3. The flow over a vent 
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FIGURE 11. The variation of the secondary outflow height with vent area: comparison between 

the experimental data, and the theoretical curve of (2.44). 

the large error bars reflecting the difficulty of measurement, particularly for vents of 
larger areas. 

The mean value of k measured using the above method was found to be 
k = 0.51 f0.03. This is somewhat less than the value of k = .\/2 that would be expected 
(Linden et al. 1990) in the case of stationary buoyant fluid above an outflow vent. This 
may be attributed to the fact that the layer is moving and angled when flowing through 
the vent, so that the effective area is smaller. 

4.4. The eflect of a vent in the primary cell 

The final set of experiments were carried out with two vents on each side of the source, 
in a symmetric arrangement with one of the vents on each side close to the source, and 
the other at some distance away. With this arrangement the effect of the large inflow 
of environmental fluid sucked in through the near vents could be calculated. 

It was predicted in $2.2.3 that the outflow rate Q, would rise by a value of 
approximately 21QP/62, where Qp is the volume flux sucked in through each vent: the 
changes in u2, u1 and gi are given in (2.52), (2.53) and (2.50). From (2.38) it can be seen 
that the minimum value of area, A,, required to vent all the outflow is given by 

It may be shown that (Barnett 1991) the increase in A ,  as a result of opening the vent 
in the primary cell is approximately given by (assuming that Q p  % Q,) 

k(h,g$A,  = Q,. (4.1) 

It is expected that Q, is proportional to the velocity of the impinging jet fluid flowing 
over the vent, and this in turn is expected to be proportional to the exit velocity 
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FIGURE 12. The variation of A ,  with (2,. The different symbols denote measurements from three 
different experiments with the same source conditions. 

of the source. Thus it is expected that Qp - Q, and the increase in 
A ,  will vary as A~~~~~~~~ - Q!. 

Experiments were performed to test this result using a single vent either side of the 
source. The source flow rate was increased in intervals whilst keeping the area of the 
vents near to the source constant. A further vent at a large distance from the source 
was then opened to a large extent by sliding the base slats apart. The slats were then 
slowly closed until a point was reached at which further closure would mean that not 
all the buoyant layer was vented by that single vent. The area of the vent is then A,. 

The experimental data points for several experiments are plotted in figure 12, and 
exhibit the linear relationship between Aincrease and Q% described above. This 
comparison provides satisfactory evidence that the theory and assumptions of Q 2.2.3 
are valid, although further experiments are required to test the dependence on the 
source velocity in equation (2.48), and to determine the nature of the functionflx,, gi) 
(although the dependence on xp could be estimated by analysis of an impinging jet 
flow). 

4.5. Further experimental observations 
In addition to the experiments performed to make the measurements described above, 
some were carried out in a general investigation of other factors which may be of 
relevance in practical applications. Only brief descriptions are given here; for a more 
detailed account the reader is referred to Barnett (1991). 

4.5.1. The effect of closing the ends of the tunnel 

In practical situations it is probable that the ends of the enclosing tunnel or duct will 
be closed. In experiments, closing the ends of the tunnel was observed to have 
negligible effect, except when (i) there were only a small number of vents, or (ii) the 
source was near to an end of the tunnel. 



298 S.  J.  Barnett 

In the former case, there may not be sufficient vent area to vent the buoyant layer 
and also allow unrestricted flow into the tunnel from the environment. The buoyant 
layer may not then be fully vented before it reaches the ends of the tunnel, causing the 
buoyant layer to mix with the ambient layer at the tunnel end. 

In the latter case there may be little or no ventilation between the source and the 
nearest closed end. The concentrations within this region and the primary cell will now 
reach higher values than before as now all of the buoyant fluid flows out in a single 
buoyant layer only. 

4.5.2. Asymmetric vent configurations 
Again, in practical situations it is unlikely that the vents will be symmetrically 

situated around the source. In experiments vent asymmetry was observed to be of little 
importance when all of the vents are outside the central mixed region : the positions of 
the vents in the counterflow has no effect on the central region and so the volume flux 
of the buoyant layer is the same on either side of the source. However, if there is a vent 
in the primary cell on one side of the source but not on the other, then there is an 
increased volume flux into the former side (due to the environmental fluid sucked in). 
Applying the model on each side of the source would imply a difference in the volume 
flux and concentration of the two buoyant layers. There was some evidence of this in 
the experiments as a larger number of vents were required to vent the buoyant layer 
on the side with the vent near to the source. 

4.5.3. Angled tunnels 
In this case, the high momentum of the source maintained the recirculating flow on 

both sides of the source but there was little further flow of buoyant fluid uphill, 
although fluid was still entrained into the primary cell on this side of the source. On 
the downhill side of the source there is a component of gravity acting to pull the 
buoyant fluid in the mixing region down the tunnel. This resulted in a breakdown in 
the counterflow system with fluid from the primary cell moving slowly down the 
tunnel, occupying nearly the entire depth. There appeared to be little entrainment on 
the downhill side of the source - all the entrainment took place on the uphill side. 

5. Conclusions 
The dynamics of a vertical, buoyant jet of high momentum in a long, possibly 

ventilated, tunnel have been investigated using a mathematical model and laboratory 
experiments. The analysis was developed assuming that the vents were symmetrically 
placed about the source, the ends of the tunnel were open and the jet length Lj was 
several times the depth of the tunnel d, i.e. 6 = L,/d % 1. The case of extremely large 
8, which results in the ambient fluid being flushed from the tunnel, has not been 
considered here. 

The excellent agreement between the predictions of the theory and the experimental 
results indicates that the model gives a good description of the flow. For the main 
features of the model to be valid, it was found that S 2 2.9 was required and so all the 
experiments were carried out under this condition. For all source values used within 
this range, the central mixed region near to the source had the same mean length of 
approximately 2.5d. It must therefore be concluded that the effect of high source 
momentum in tanks of length 5 5d will be to mix the whole tank (provided that the 
source is vertical and centrally placed, that S > 2.9, and that the length of the tank is 
not too small). 
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Applying Benjamin’s (1968) analysis of the flow over the ‘head’ of an air pocket in 
the present situation, it was deduced that the buoyant outflow should occupy half the 
depth of the tunnel h, = $d. This result was supported by almost all of the experiments, 
as are the consequent dependencies of the outflow velocity and reduced gravity on the 
source flow rate: u, - Qa and g; - Qi. It should also be noted that the total volume 
flux of the outflowing buoyant fluid, 2Q,, is very much greater than that of the source; 
with the values suggested in 52.1.3, 2Q, > 33Q,, and hence a relatively small volume 
input will produce a much larger volume motion within the tunnel. The reduced gravity 
of the outflow is lower than that of the source by an equal factor. This solution 
(2.31)-(2.34) was used as the basis for the subsequent analysis of the flows over vents 
and the concentration build-up within the primary cell. 

The time dependence of the central mixing region concentration was also calculated. 
In the analysis it was assumed that the volume flux of the buoyant outflow is dependent 
only on the mean concentration of the central region. The excellent agreement between 
the theory and experiment (figure 10) indicated the validity of this assumption. As 
suggested, it was found that the mean concentration of the central region, g: is slightly 
higher than that of the outflow, gi with gi/g: = K z 0.9. Once the steady state is 
reached, which was within two minutes in all of the experiments, g; appears to fluctuate 
by up to approximately 8% about its mean, maximum value. 

The other aspect considered was the effect of ventilation points along the tunnel. 
There are four possible ventilation modes (which may occur in combination) 
depending on the position of the vent relative to the source. 

Firstly, if all or part of the vent is within z 2ad of the source axis (where a z O.l), 
then the overlapping jet fluid will flow straight out of the vent. The jet fluid impinging 
between the vent and the source axis may still recirculate, but the flow system of figure 
3 may not now apply. This situation has not been studied in any detail. 

Secondly, if the vent is within the primary cell region, but is not sufficiently close to 
the source to allow the jet to flow straight out of the vent, then the pressure drop 
associated with the recirculating fluid causes environmental fluid to be ‘ sucked ’ into 
the recirculating cell. This results in an increase in the volume flux entering the primary 
cell and hence the volume flux of the buoyant outflow increases. The analysis showed 
that this increase in volume flux is about a third of the volume flux of the 
environmental fluid being sucked into the primary cell. The environmental fluid sucked 
in also acts to dilute the buoyant fluid, and so the concentration values are lowered. 

Thirdly, if the vent is between the primary cell and the counterflow regions, then 
initially the recirculating fluid will suck environmental fluid through it as in the case 
above. However as the concentration of the central region increases to the steady state, 
the increasing buoyancy of the fluid above the vent increasingly opposes the weak 
inflow until the inflow is stopped and the buoyant fluid flows out. 

Finally consider vents in the counterflow region. In 92.2.2 a simple analysis of the 
flow over a vent was developed. The importance of this analysis is that the volume flux 
and depth of any ‘secondary’ buoyant layer may be calculated. The analysis may then 
be applied repeatedly for successive outflow layers until all of the initial buoyant fluid 
layer has been vented. Thus this provides a method for calculating the total number of 
vents required to remove the buoyant outflow from the tunnel. 

In 9 1, the flow caused by a leakage of a buoyant gas from a pipe in a duct or tunnel 
was given as one possible application of the model. Assuming that the density of the 
gas in the pipe was known, then, using the results presented here, it would be possible 
to calculate the minimum area required to vent the buoyant outflow created by a leak 
(see 94.4) using a single vent, assuming also that the leak was not so near to a vent so 



300 S .  J. Barnett 

that environmental fluid was sucked in. The spacing between the vents should be high 
so that the probability of the source being near to a vent is small, although if this were 
the case the maximum concentrations reached would be lower. Ideally, the ends of the 
tunnel should be open and if the ends are closed, the tunnel should extend some 
distance beyond the length of the gas pipe. 
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